
 1 

Gonno's vakkenvuller: een stap-voor-stap Sudoku Solver 
 
Methode 
De hier gebruikte stap-voor-stap oplosmethode is geïmplementeerd in de scripttaal PHP1 en is 
een vertaling van een eerder door mij gemaakte Matlab2-versie. Het maken van die versie gaat 
terug naar 2009. In dat jaar heb ik een aantal oplosmethoden voor de Sudoku-puzzel 
uitgewerkt in Matlab. De eerste methode maakte gebruik van het feit dat een Sudoku-puzzel 
(wiskundig) gezien kan worden als een bijzondere vorm van een zogenoemd binair integer 
lineair programmeringsprobleem. Voor dit soort problemen bevat Matlab, althans de in het 
verlengde van de standaardversie verkrijgbare Optimization Toolbox, een adequate 
oplosmodule, de functie bint.  
Toepassing van bint maakt duidelijk of de Sudoku een oplossing heeft. Als dat het geval is 
dan wordt de oplossing, of een van de mogelijke oplossingen, ook daadwerkelijk gevonden 
door bint. Het op deze wijze vinden van een complete oplossing in één klap is voor de 
puzzelaar uiteraard geen interessante optie. Als deze al gebruik zou willen maken van de hulp 
van de computer dan is het hoogstens voor het vinden van één nieuw vakje en dan natuurlijk 
alleen voor het geval hem dit zelf te veel tijd gaat kosten. Zo'n hulpje (een 1-vakjevuller), 
vraagt dus om een rekenmethode waarmee de oplossing van de Sudoku stap voor stap, vakje 
voor vakje, wordt bepaald.  
Dergelijke methoden zijn in diverse uitvoeringen en smaken te vinden op internet, ook enkele 
implementaties in Matlab. Als startpunt voor mijn eigen implementatie heb ik gekozen voor 
de methode zoals die is beschreven door Edward Markovich3. Zijn aanpak volgt in grote 
lijnen de strategie van de gemiddelde puzzelaar.  
 
In mijn Matlab-versie heb ik geen gebruik gemaakt van de door Markovich beschikbaar 
gestelde Matlab-functies, maar heb ik een eigen vertaling gemaakt van zijn ideeën. Volstaan 
is met het toepassen van de stap-voor-stap techniek, die alleen voor de niet al te moeilijke 
Sudoku's geschikt is: de lastiger Sudoku's kunnen hiermee NIET opgelost worden.  
 

Markovich geeft aan hoe met behulp van backtracking (gekoppeld aan de stap voor stap 
techniek) de lastigere Sudoku's zijn op te lossen. Dat procédé wordt toegepast wanneer op 
zeker moment er van de resterende vakjes geen is waarvoor het in te vullen cijfer valt vast te 
stellen. Voor het vakje waarvoor het minste aantal mogelijkheden openstaat wordt dan een 
keuze (een van de mogelijke cijfers) gemaakt. Daarna wordt de Sudoku weer stap voor stap 
ingevuld. Als zich vervolgens, na het invullen van een of meer nieuwe vakjes, problemen 
voordoen (de Sudoku-regels voor rijen, kolommen of 3*3-vierkantjes worden geschonden) 
dan moet de eerder gemaakte keuze worden herzien. Met een nieuwe keuze wordt dan het 
bovengenoemde proces opnieuw uitgevoerd. Deze opzet – waarbij de stap-voor-stap methode 
als onderdeel wordt gebruikt - kan eventueel ook 'met de hand' worden uitgevoerd. 

                                                 
1 PHP (PHP: Hypertext Preprocessor) is een scripttaal, die bedoeld is om op webservers dynamische webpagina's 
te creëren. PHP is in 1994 ontworpen door Rasmus Lerdorf, een senior softwareontwikkelaar bij IBM. Lerdorf 
gebruikte Perl als inspiratie. Bron: Wikipedia 
 
2 MATLAB (oorspronkelijk MATrix LABoratory) is een technische softwareomgeving uitgegeven door The 
Mathworks en wordt gebruikt in zowel de industrie als de academische wereld voor allerhande wiskundige 
toepassingen zoals het berekenen van functies, bewerken van matrices, statistiek, tekenen van grafieken, 
schrijven en implementeren van algoritmen en het maken van grafische gebruikersinterfaces. De basis van het 
programma is de programmeertaal ‘M-code’ of ‘M’. Deze wordt gebruikt voor het invoeren, bewerken en 
uitvoeren van gegevens. Bron: Wikipedia 
 
3 zie https://sites.google.com/site/edmarkovich2/matlab_doku 

https://sites.google.com/site/edmarkovich2/matlab_doku


 2 

 
In de volgende globale beschrijving duiken de volgende termen op: 
- rij       : reeks van 9 opeenvolgende horizontale vakjes waarin de cijfers 1 t/m 9 moeten  
               voorkomen 
- kolom: reeks van 9 opeenvolgende verticale vakjes waarin de cijfers 1 t/m 9 moeten  
               voorkomen 
- quad  :  reeks van vakjes in de 3*3 vierkantjes waarin de cijfers 1 t/m 9 moeten voorkomen 
 
De stap-voor-stap methode bestaat uit een aantal basistechnieken, door Markovich scans 
genoemd. In de zo genoemde quad_scan wordt voor elk van de rijen, kolommen en quads 
een lijstje gemaakt van de in deze rij, kolom of quad ontbrekende cijfers en de vakjes waarin 
deze geplaatst moeten worden (zij het dat op dit moment nog niet duidelijk is welk 
ontbrekend cijfer in welk leeg vakje). Neem als voorbeeld een quad met de vulling: 

1 - 3 
2-  - 
5 6 7 

Hier ontbreken dus de cijfers 4, 8 en 9. De 4, bijvoorbeeld, moet in een van de drie lege 
vakjes komen. Als nu in een onderliggende quad een 4 voorkomt in kolom 2 dan moet de 4 in 
de onderzochte quad dus geplaatst worden in kolom 3. Omdat daar maar één vakje leeg is 
betekent dit dat de vier in dat ene vakje geplaatst moet worden. Het recept is dus: als we voor 
een ontbrekend cijfer in een bepaalde quad het aantal mogelijke vakjes – door het inspecteren 
van rijen, kolommen en andere quads – kunnen terugbrengen tot één dan moet dat ene vakje 
het ontbrekende cijfer bevatten. Het invullen van het cijfer in het vakje kan tot gevolg hebben 
dat er nu voor een ander vakje het noodzakelijk te plaatsen cijfer kan worden vastgesteld. 
Door systematisch deze techniek toe te passen op alle lege vakjes kan een serie van vullingen 
worden bepaald 
De vakjes die aldus door de quad_scan successievelijk worden gevonden worden in de 
resultaten met de kleur groen voor het gevonden cijfer weergegeven; boven het Sudoku-
diagram wordt de tekst: "Ingevulde vakje (groen) gevonden met methode QuadScan". Tevens 
wordt aangegeven hoeveel van de hierna te plaatsen vakjes gevonden zijn in dezelfde scan.  
 
De volgende basistechniek is de matrix_scan1 (bij Markovich matrix_scan genoemd). Hier 
wordt bij alle lege vakjes (van de in totaal 81 vakjes) gekeken welke cijfers niet voorkomen in 
de rij, de kolom en de quad waar het lege vakje deel van uitmaakt.  Als dit maar 1 cijfer blijkt 
te zijn, dan moet dit cijfer dus geplaatst worden in het beschouwde vakje. Het invullen van het 
cijfer in het vakje kan tot gevolg hebben dat er nu voor een ander vakje het noodzakelijk te 
plaatsen cijfer kan worden vastgesteld. Door weer systematisch deze techniek toe te passen op 
alle lege vakjes kan een serie van vullingen worden bepaald. De vakjes die door de 
matrix_scan zijn gevonden worden in de resultaten met het gevonden cijfer in de kleur rood 
weergegeven; boven het Sudoku-diagram wordt de tekst: "Ingevulde vakje (rood) gevonden 
met methode MatrixScan". Ook wordt aangegeven hoeveel van de hierna te plaatsen vakjes 
gevonden zijn in dezelfde scan.  
 
In de totale oplosmethode worden de genoemde basistechnieken achtereenvolgens toegepast. 
De serie van vakjes die door een basistechniek in een keer worden gevonden worden 'in de 
wachtkamer' geplaatst, waarna ze een voor een, op grond van de opdracht "Los Sudoku op: 
vul een vakje in", uit de wachtkamer worden gehaald en in het diagram ingevuld. Als alle 
vakjes uit een serie op zijn wordt een volgende basistechniek toegepast en worden de 
resultaten daarvan in de wachtkamer gezet. Dit proces wordt voortgezet tot alle vakjes zijn 
ingevuld. 



 3 

 
Voor het oplossen van de traditionele Sudoku zijn de besproken technieken afdoende. Omdat 
ik in mijn Sudoku Solver ook de mogelijkheid wilde bieden de in NRC-Handelsblad 
gepubliceerde Sudoku-varianten op te lossen heb ik twee extra scantechnieken 
(redquad_scan en matrix_scan2) geïmplementeerd waarin rekening wordt gehouden met de 
extra gemarkeerde 3 bij 3 vierkantjes die voorkomen in de NRC-variant. Ze zijn opgezet in 
analogie met quad_scan en matrix-sccan.  Cijfers die gevonden worden met redquad_scan 
worden in magenta weergegeven. Resultaten van matrix_scan2 worden in blauw aangegeven. 
 
 
Wat als de methode niet werkt? 
Als de hier gepresenteerde Sudoku-solver geen oplossing vindt dan kan de op blz. 1 
beschreven backtracking handmatig worden uitgevoerd.  Een methode die altijd werkt, dan 
wel vaststelt dat een gegeven Sudoku geen oplossing heeft, is de eerder genoemde binair 
integer programmeringmethode (zoals ik die in Matlab heb). Deze methode kan via internet 
gebruikt worden, maar daar komt wel heel wat bij kijken. Zie " Solving Sudoku using the 
NEOS optimization Solver" op http://neos-server.org/casestudies/sudoku/sudoku.html. 
 
 
Gonno 
 

http://neos-server.org/casestudies/sudoku/sudoku.html

