Gonno's vakkenvuller: een stap-voor-stap Sudoku Solver

Methode

De hier gebruikte stap-voor-stap oplosmethode is geimplementeerd in de scripttaal PHP' en is
een vertaling van een eerder door mij gemaakte Matlab”-versie. Het maken van die versie gaat
terug naar 2009. In dat jaar heb ik een aantal oplosmethoden voor de Sudoku-puzzel
uitgewerkt in Matlab. De eerste methode maakte gebruik van het feit dat een Sudoku-puzzel
(wiskundig) gezien kan worden als een bijzondere vorm van een zogenoemd binair integer
lineair programmeringsprobleem. Voor dit soort problemen bevat Matlab, althans de in het
verlengde van de standaardversie verkrijgbare Optimization Toolbox, een adequate
oplosmodule, de functie bint.

Toepassing van bint maakt duidelijk of de Sudoku een oplossing heeft. Als dat het geval is
dan wordt de oplossing, of een van de mogelijke oplossingen, ook daadwerkelijk gevonden
door bint. Het op deze wijze vinden van een complete oplossing in één klap is voor de
puzzelaar uiteraard geen interessante optie. Als deze al gebruik zou willen maken van de hulp
van de computer dan is het hoogstens voor het vinden van één nieuw vakje en dan natuurlijk
alleen voor het geval hem dit zelf te veel tijd gaat kosten. Zo'n hulpje (een 1-vakjevuller),
vraagt dus om een rekenmethode waarmee de oplossing van de Sudoku stap voor stap, vakje
voor vakje, wordt bepaald.

Dergelijke methoden zijn in diverse uitvoeringen en smaken te vinden op internet, ook enkele
implementaties in Matlab. Als startpunt voor mijn eigen implementatie heb ik gekozen voor
de methode zoals die is beschreven door Edward Markovich®. Zijn aanpak volgt in grote
lijnen de strategie van de gemiddelde puzzelaar.

In mijn Matlab-versie heb ik geen gebruik gemaakt van de door Markovich beschikbaar
gestelde Matlab-functies, maar heb ik een eigen vertaling gemaakt van zijn ideeén. Volstaan
1s met het toepassen van de stap-voor-stap techniek, die alleen voor de niet al te moeilijke
Sudoku's geschikt is: de lastiger Sudoku's kunnen hiermee NIET opgelost worden.

Markovich geeft aan hoe met behulp van backtracking (gekoppeld aan de stap voor stap
techniek) de lastigere Sudoku's zijn op te lossen. Dat procédé wordt toegepast wanneer op
zeker moment er van de resterende vakjes geen is waarvoor het in te vullen cijfer valt vast te
stellen. Voor het vakje waarvoor het minste aantal mogelijkheden openstaat wordt dan een
keuze (een van de mogelijke cijfers) gemaakt. Daarna wordt de Sudoku weer stap voor stap
ingevuld. Als zich vervolgens, na het invullen van een of meer nieuwe vakjes, problemen
voordoen (de Sudoku-regels voor rijen, kolommen of 3*3-vierkantjes worden geschonden)
dan moet de eerder gemaakte keuze worden herzien. Met een nieuwe keuze wordt dan het
bovengenoemde proces opnieuw uitgevoerd. Deze opzet — waarbij de stap-voor-stap methode
als onderdeel wordt gebruikt - kan eventueel ook 'met de hand' worden uitgevoerd.

! PHP (PHP: Hypertext Preprocessor) is een scripttaal, die bedoeld is om op webservers dynamische webpagina's
te creéren. PHP is in 1994 ontworpen door Rasmus Lerdorf, een senior softwareontwikkelaar bij IBM. Lerdorf
gebruikte Perl als inspiratie. Bron: Wikipedia

> MATLAB (oorspronkelijk MATrix LABoratory) is een technische softwareomgeving uitgegeven door The
Mathworks en wordt gebruikt in zowel de industrie als de academische wereld voor allerhande wiskundige
toepassingen zoals het berekenen van functies, bewerken van matrices, statistiek, tekenen van grafieken,
schrijven en implementeren van algoritmen en het maken van grafische gebruikersinterfaces. De basis van het
programma is de programmeertaal ‘M-code’ of ‘M’. Deze wordt gebruikt voor het invoeren, bewerken en
uitvoeren van gegevens. Bron: Wikipedia

3 zie https:/sites.google.com/site/edmarkovich2/matlab_doku



https://sites.google.com/site/edmarkovich2/matlab_doku

In de volgende globale beschrijving duiken de volgende termen op:

- 11j : reeks van 9 opeenvolgende horizontale vakjes waarin de cijfers 1 t/m 9 moeten
voorkomen

- kolom: reeks van 9 opeenvolgende verticale vakjes waarin de cijfers 1 t/m 9 moeten
voorkomen

- quad : reeks van vakjes in de 3*3 vierkantjes waarin de cijfers 1 t/m 9 moeten voorkomen

De stap-voor-stap methode bestaat uit een aantal basistechnieken, door Markovich scans
genoemd. In de zo genoemde quad_scan wordt voor elk van de rijen, kolommen en quads
een lijstje gemaakt van de in deze rij, kolom of quad ontbrekende cijfers en de vakjes waarin
deze geplaatst moeten worden (zij het dat op dit moment nog niet duidelijk is welk
ontbrekend cijfer in welk leeg vakje). Neem als voorbeeld een quad met de vulling:

1-3
2. -
567

Hier ontbreken dus de cijfers 4, 8 en 9. De 4, bijvoorbeeld, moet in een van de drie lege
vakjes komen. Als nu in een onderliggende quad een 4 voorkomt in kolom 2 dan moet de 4 in
de onderzochte quad dus geplaatst worden in kolom 3. Omdat daar maar ¢én vakje leeg is
betekent dit dat de vier in dat ene vakje geplaatst moet worden. Het recept is dus: als we voor
een ontbrekend cijfer in een bepaalde quad het aantal mogelijke vakjes — door het inspecteren
van rijen, kolommen en andere quads — kunnen terugbrengen tot één dan moet dat ene vakje
het ontbrekende cijfer bevatten. Het invullen van het cijfer in het vakje kan tot gevolg hebben
dat er nu voor een ander vakje het noodzakelijk te plaatsen cijfer kan worden vastgesteld.
Door systematisch deze techniek toe te passen op alle lege vakjes kan een serie van vullingen
worden bepaald

De vakjes die aldus door de quad scan successievelijk worden gevonden worden in de
resultaten met de kleur groen voor het gevonden cijfer weergegeven; boven het Sudoku-
diagram wordt de tekst: "Ingevulde vakje (groen) gevonden met methode QuadScan". Tevens
wordt aangegeven hoeveel van de hierna te plaatsen vakjes gevonden zijn in dezelfde scan.

De volgende basistechniek is de matrix_scan1 (bij Markovich matrix_scan genoemd). Hier
wordt bij alle lege vakjes (van de in totaal 81 vakjes) gekeken welke cijfers niet voorkomen in
de rij, de kolom en de quad waar het lege vakje deel van uitmaakt. Als dit maar 1 cijfer blijkt
te zijn, dan moet dit cijfer dus geplaatst worden in het beschouwde vakje. Het invullen van het
cijfer in het vakje kan tot gevolg hebben dat er nu voor een ander vakje het noodzakelijk te
plaatsen cijfer kan worden vastgesteld. Door weer systematisch deze techniek toe te passen op
alle lege vakjes kan een serie van vullingen worden bepaald. De vakjes die door de
matrix_scan zijn gevonden worden in de resultaten met het gevonden cijfer in de kleur rood
weergegeven; boven het Sudoku-diagram wordt de tekst: "Ingevulde vakje (rood) gevonden
met methode MatrixScan". Ook wordt aangegeven hoeveel van de hierna te plaatsen vakjes
gevonden zijn in dezelfde scan.

In de totale oplosmethode worden de genoemde basistechnieken achtereenvolgens toegepast.
De serie van vakjes die door een basistechniek in een keer worden gevonden worden 'in de
wachtkamer' geplaatst, waarna ze een voor een, op grond van de opdracht "Los Sudoku op:
vul een vakje in", uit de wachtkamer worden gehaald en in het diagram ingevuld. Als alle
vakjes uit een serie op zijn wordt een volgende basistechniek toegepast en worden de
resultaten daarvan in de wachtkamer gezet. Dit proces wordt voortgezet tot alle vakjes zijn
ingevuld.



Voor het oplossen van de traditionele Sudoku zijn de besproken technieken afdoende. Omdat
ik in mijn Sudoku Solver ook de mogelijkheid wilde bieden de in NRC-Handelsblad
gepubliceerde Sudoku-varianten op te lossen heb ik twee extra scantechnieken
(redquad_scan en matrix_scan2) geimplementeerd waarin rekening wordt gehouden met de
extra gemarkeerde 3 bij 3 vierkantjes die voorkomen in de NRC-variant. Ze zijn opgezet in
analogie met quad scan en matrix-sccan. Cijfers die gevonden worden met redquad scan
worden in magenta weergegeven. Resultaten van matrix_scan2 worden in blauw aangegeven.

Wat als de methode niet werkt?

Als de hier gepresenteerde Sudoku-solver geen oplossing vindt dan kan de op blz. 1
beschreven backtracking handmatig worden uitgevoerd. Een methode die altijd werkt, dan
wel vaststelt dat een gegeven Sudoku geen oplossing heeft, is de eerder genoemde binair
integer programmeringmethode (zoals ik die in Matlab heb). Deze methode kan via internet
gebruikt worden, maar daar komt wel heel wat bij kijken. Zie " Solving Sudoku using the
NEOS optimization Solver" op http://neos-server.org/casestudies/sudoku/sudoku.html.

Gonno


http://neos-server.org/casestudies/sudoku/sudoku.html

